
Magnetization studies of Landau level broadening in two-dimensional electron systems

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys.: Condens. Matter 8 5189

(http://iopscience.iop.org/0953-8984/8/28/004)

Download details:

IP Address: 171.66.16.206

The article was downloaded on 13/05/2010 at 18:18

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/8/28
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter8 (1996) 5189–5207. Printed in the UK

Magnetization studies of Landau level broadening in
two-dimensional electron systems

A Potts†, R Shepherd†, W G Herrenden-Harker†, M Elliott†, C L Jones‡,
A Usher‡, G A C Jones§, D A Ritchie§, E H Linfield§ and M Grimshaw§
† Department of Physics and Astronomy, University of Wales College of Cardiff, PO Box 913,
Cardiff CF2 3YB, UK
‡ Department of Physics, Stocker Road, University of Exeter, Exeter EX4 4QL, UK
§ Cavendish Laboratory, Department of Physics, University of Cambridge, Madingley Road,
Cambridge CB3 0HE, UK

Received 22 January 1996, in final form 18 April 1996

Abstract. We have used a torque magnetometer to measure de Haas–van Alphen oscillations in
the magnetization of two-dimensional electrons in GaAs/AlGaAs heterostructures and multiple-
quantum-well systems for temperatures ranging from 0.125 K to 4.2 K and in magnetic fields of
up to 15 T. Our results indicate that for high magnetic fields the density of states can be described
by a series of Lorentzian-broadened Landau levels with a broadening that is independent of the
magnetic field,B, and Landau level index,n. However, at low magnetic fields the Lorentzian-
broadened density of states becomes indistinguishable from a Gaussian one with a broadening
that is proportional toB1/2. The high-field behaviour of the Landau level line-shape is shown to
differ appreciably from the low-field case as reported by other workers using both magnetization
and other experimental methods. The reliability of this and other experimental techniques is
discussed.

1. Introduction

Since the discovery of the integral quantized Hall effect [1] (QHE) the properties of the
two-dimensional (2D) electron gas (2DEG) have been extensively studied. The role of the
density of states (DOS) is known to be important in influencing many of the phenomena
that are associated with the QHE such as edge states [2] and non-local sample resistance
[3], as well as being a central feature in any understanding of the fractionally quantized
Hall effect [4]. Yet in spite of this there is still no clear consensus regarding the exact form
of the Landau level DOS in such systems.

In recent years several attempts have been made to measure Landau level line-shapes
and the extent of their broadening using a variety of different experimental techniques.
These have included investigations of the specific heat [5, 6], photoluminescence [7],
magnetocapacitance [8–12] and magnetization [13–15]. The ideal measurement technique
would be one which was capable of directly probing the single-particle DOS but at the
same time did not perturb the thermodynamic equilibrium of the system. The greater the
perturbation the more difficult it becomes to extract reliable information about the DOS.

Most of the above experimental techniques have significant disadvantages. For example,
although photoluminescence is capable of probing the DOS directly by exciting electrons
from deep levels, it necessarily perturbs the system in doing so and, in addition, requires a
detailed knowledge of optical dispersion in the sample in order to interpret the data.
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Specific heat measurements are also difficult due to the problems of ensuring adequate
thermal isolation of the sample and in measuring the extremely small temperature rises in
the 2DEG. There is also the additional problem at low temperatures of ensuring that good
thermal coupling exists between the 2DEG, the phonon gas and the resistance thermometer
used to measure the temperature rise. The possible existence of a non-thermal phonon
distribution, weak phonon–phonon and electron–phonon scattering, and the presence of
Kapitza thermal resistances between the sample and the temperature sensor only complicates
matters further.

A more popular technique in recent years has been that of magnetocapacitance, due
in part to its ease of use; however, its interpretation can be complicated by factors such
as coupling of the magnetocapacitance signal to the magnetoresistance of the 2DEG. For
example, it is known that Shubnikov–de Haas oscillations in the resistivity of the 2DEG can
mimic magnetocapacitance oscillations, and it has recently been shown that the presence of
edge states in the 2DEG can also affect the oscillation amplitude [12].

Magnetization measurements of 2D electron systems on the other hand do not suffer
from any of the above disadvantages. The measurements are performed using a magnetic
field, the same field that quantizes the Landau levels. Consequently, the system itself
is unperturbed by the actual measurement process unless the sweep-rate of the field is
sufficiently high to cause resistive heating (but this is true of all other experimental methods
as well). In addition, because the magnetization is a thermodynamic function it is easily
calculated for a given DOS as is shown in section 3. The only significant obstacle in the past
to undertaking such measurements has been that of designing apparatus with the required
sensitivity. This level of sensitivity is now possible using torque magnetometry.

The need for a magnetization study of Landau level broadening is clear from a study
of recent experimental results. To date there is little or no consensus regarding the Landau
level line-shape or the magnetic field dependence of the broadening. Various methods have
been used to measure both, and a variety of different models for the Landau level DOS
have been proposed both theoretically and experimentally. Some workers have reported
Gaussian line-shapes [5–9, 11, 13–15], while others claim it is Lorentzian [10]. Some
report a broadening parameter,0, that is independent [5, 8, 10, 14] of applied magnetic
field, B, while others [9, 11, 13, 15] report that0 varies asB1/2. In addition, several
authors [5, 7, 9, 11] have resorted to the use of a constant background to the DOS in
order to resolve the discrepancy between their experimental results and theory. Other less
common variations include a Landau level width that varies with filling factor [7],ν, and
a broadening term that is a function of the DOS at the Fermi energy [6],µ. This latter
model has been ascribed to weak screening of the charge in the 2DEG. The effect on the
broadening of inhomogeneities in the 2D carrier concentration has also been considered [8].

Most of these observations have some basis in theory. Ando and Uemura [16] predicted
that short-range potential scattering would result in a broadening that varied asB1/2, while
theoretical arguments have predicted both elliptical [16] and Gaussian [17] line-shapes for
the Landau levels. Recent work [18, 19] has indicated that the broadening,0, may undergo
a transition from aB1/2-dependence at low fields to a broadening that is independent
of field as B is increased, the critical parameter being the ratio of the magnetic length,
lB = (h̄/eB)1/2, to the range of the disorder. Other workers [20–22], however, favour a
self-consistent screening theory for the 2DEG which results in a broadening that oscillates
with field, while Gerhardts and Gudmundsson have attributed the background DOS to sample
inhomogeneities [23].

In this paper we shall report the results of magnetization measurements performed
on various 2D electron systems. The measurements were performed using a torque
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magnetometer similar to those reported previously [13–15], but using much higher magnetic
fields and lower temperatures. In this regime the de Haas–van Alphen (dHvA) oscillations
display a higher degree of harmonic content which allows them to be compared critically
with the various models. We shall show that the broadening of the DOS at large magnetic
fields is independent of field and Landau level index, and is Lorentzian in nature with no
arbitrary background contribution. This clearly contradicts most of the experimental results
presented to date [5–11, 13–15].

2. Experimental arrangement

We have developed a torque magnetometer [15, 24] that is capable of measuring magnetic
moments of less than 10−12 A m2 at temperatures down to 80 mK. The magnetometer
consists of a gold-coated silicon or gallium arsenide rotor of area 14 mm× 14 mm
which supports the sample under investigation and is suspended by two phosphor-bronze
torsion fibres so that it is free to rotate in the magnetic field (see figure 1). Silicon and
gallium arsenide were chosen as the materials for the rotor because of their low intrinsic
magnetization. When a magnetic field is applied at an angle,θ , to the normal of the sample,
a torque is exerted on the sample and rotor due to the anisotropy in the magnetization of
the two-dimensional electron gas (it is always perpendicular to the plane of the electron
gas), causing the sample and rotor to rotate in the field until an equal and opposite torque
is established in the torsion fibres. The angular deflection of the rotor can be detected using
two parallel-plate capacitors that are formed by the gold film on the back of the rotor and
the two half-leaves of the stator (see figure 1).

By measuring the relative change in capacitance of the two capacitors using a
capacitance bridge and lock-in techniques at a frequency of∼10 kHz, the torque on
the sample can be determined as a function of magnetic flux density, and hence the
magnetization of the sample can be found. The system is calibratedin situ using a current-
carrying coil of known dimensions supported on the rotor (see figure 1) to generate a known
torque. This method appears to be more reliable than the previous one [15] which was to
observe the superconducting-to-normal transition of a piece of lead wire.

3. Magnetization of a 2D Fermi system

We have considered two different models for the DOS,g(E, B), each of which assumes
a periodic array of Landau levels with the broadening of each level being independent of
the Landau level index,n. The first model assumes the broadening to be Gaussian with the
DOS given by

g(E, B) = 2eB

h

1

0
√

2π

∞∑
n=−∞

exp

(
− (E − En)

2

202

)
(1)

whereEn is the energy of the Landau level of indexn given by

En = (n + 1
2)h̄ωc (2)

andωc = eB/m∗ is the cyclotron frequency. The Landau level broadening,0, is assumed
to be a function of magnetic field,B, with

0(B) = 00B
p. (3)

This is consistent with most theoretical models [16, 18, 19] and experimental observations
[5, 7–15] which propose that eitherp = 0 or p = 1/2. This assumption will be justified
by the experimental results reported in section 4.
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Figure 1. A schematic diagram of the magnetometer and the experimental arrangement used
for its calibration with the calibration coil and the sample mounted on the rotor.

The second model that we have considered assumes a Lorentzian-broadened DOS
defined by

g(E, B) = 2eB

h

1

π

∞∑
n=−∞

0

(E − En)2 + 02
. (4)

In recent years several authors have also reported the existence of a constant background
to the density of states [5, 7, 9, 11]. This background can be characterized by a parameter
ξ representing the magnitude of the background density of states as a fraction of the zero-
field density of states. If this is incorporated into our model the modified density of states,
g′(E, B), becomes

g′(E, B) = ξ
m∗

πh̄2 + (1 − ξ)g(E, B) (0 6 ξ < 1). (5)

By assuming the Gaussian and Lorentzian DOS models to be periodicand symmetric
aboutE = 0 it is possible to express them both as Fourier series. Thus, for the Gaussian
case, the DOS can be written as

g′(E, B) = m∗

πh̄2

{
1 + 2(1 − ξ)

∞∑
s=1

(−1)s exp

(
−2(sπ0)2

(h̄ωc)2

)
cos

(
2sπE

h̄ωc

)}
(6)

while for the Lorentzian broadening it becomes

g′(E, B) = m∗

πh̄2

{
1 + 2(1 − ξ)

∞∑
s=1

(−1)s exp

(
−2sπ0

h̄ωc

)
cos

(
2sπE

h̄ωc

)}
. (7)

In both cases the background DOS parameterξ has been included and it can be seen that
its effect is to reduce the amplitude of the oscillations by a factor of(1 − ξ).

In order to analyse our experimental data we have developed an analytical model for
the magnetization that is an extension of that proposed by Shoenberg [25], but extended to
include Landau level broadening and the effect of a background DOS. The starting point



Magnetization studies of Landau level broadening 5193

for this model is the grand thermodynamic potential per unit area,�(B), from which the
2D magnetization is derived according to equation (8):

M(B) = −
(

∂�

∂B

)
T ,µ

. (8)

It has been shown by Shoenberg [25] that if the DOS is periodic, it is possible to derive
analytical expressions for the carrier density,ns , and grand thermodynamic potential,�(B),
using the Fourier series expressions for the DOS described in equations (6) and (7). These
expressions forns and�(B) will hold for any 2D electron system for which the condition
µ � kT is satisfied.

The grand thermodynamic potential can be evaluated using the expression

�(B) = kT

∫ ∞

0
g′(E, B) ln

[
1 − f (E, µ)

]
dE (9)

wheref (E, µ) is the Fermi function given by

f (E, µ) = 1

1 + exp((E − µ)/kT )
. (10)

For the case of Gaussian broadening equation (9) can be rewritten as

�(B) = m∗kT

πh̄2

{
I3 + 2(1 − ξ)

∞∑
s=1

(−1)s exp

(
−2(sπ0)2

(h̄ωc)2

)
I4

}
(11)

where

I3 =
∫ ∞

0
ln

[
1 − f (E, µ)

]
dE = −

{
µ2

2kT
+ π2kT

6

}
(12)

and

I4 =
∫ ∞

0
ln

[
1 − f (E, µ)

]
cos

(
2πsE

h̄ωc

)
dE = − (h̄ωc)

2

4π2s2kT
+ h̄ωc

2s

cos(2πsµ/h̄ωc)

sinh(2π2skT /h̄ωc)

(13)

while for Lorentzian broadening equation (9) becomes

�(B) = m∗kT

πh̄2

{
I3 + 2(1 − ξ)

∞∑
s=1

(−1)s exp

(
−2sπ0

h̄ωc

)
I4

}
. (14)

Because the magnetization measurement is a contactless measurement, the 2D electron
carrier density remains constant as the magnetic field is varied, and it is the chemical
potential,µ, that oscillates with the magnetic field. Therefore, in order to evaluate the 2D
magnetization,M(B), it is necessary to determineµ(B) for each value ofB. This is done
using a bisection method subject to the constraint of particle conservation:

ns =
∫ ∞

0
f (E, µ)g′(E, B) dE. (15)

Using the same method of integration forns as for the grand potential above, and again
requiring thatµ � kT , equation (15) can be rewritten as

ns = m∗

πh̄2

{
I1 + 2(1 − ξ)

∞∑
s=1

(−1)s exp

(
−2(sπ0)2

(h̄ωc)2

)
I2

}
(16)
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for Gaussian broadening and

ns = m∗

πh̄2

{
I1 + 2(1 − ξ)

∞∑
s=1

(−1)s exp

(
−2sπ0

h̄ωc

)
I2

}
(17)

for Lorentzian broadening whereI1 is given by

I1 =
∫ ∞

0
f (E, µ) dE = µ + kT ln(1 + e−µ/kT ) (18)

andI2 by

I2 =
∫ ∞

0
f (E, µ) cos

(
2πsE

h̄ωc

)
dE = πkT

sin(2πsµ/h̄ωc)

sinh(2π2skT /h̄ωc)
. (19)

Figure 2. The magnetometer output at a temperature of 0.3 K in terms of torque as a function
of external magnetic flux for the ten-period GaAs/AlGaAs multiple-quantum-well sample. The
original data are shown as curve A, while curve B represents the best fit to the background
due to the rotor and the sample substrate. The difference between the two curves (curve C)
is ascribed to the contribution of the two-dimensional electrons to the torque. The peaks at
B = 9.45 T are due to eddy currents.

From equations (8) and (11)–(14) it is possible to derive expressions for the 2D
magnetization,M(B). For the case of Gaussian broadening this is found to be

M(B) = −(1 − ξ)
2m∗kT

πh̄2

∞∑
s=1

(−1)s exp

(
−2[πs0(B)]2

(h̄ωc)2

) [(
∂I4

∂B

)
µ,T

+ (1 − p)

[
2πs0(B)

h̄ωc

]2
I4

B

]
(20)

and for Lorentzian broadening

M(B) = −(1 − ξ)
2m∗kT

πh̄2

∞∑
s=1

(−1)s exp

(
−2πs0(B)

h̄ωc

)

×
[(

∂I4

∂B

)
µ,T

+ (1 − p)
2πs0(B)

Bh̄ωc

I4

]
(21)
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Figure 3. 2D magnetization (solid dots) versus perpendicular magnetic flux density,B, for the
ten-period GaAs/AlGaAs multiple-quantum-well structure at a temperature of 1.2 K together
with the best fits to the data assuming a Gaussian broadening of the Landau levels and two
models for the broadening of0 = 1.92 meV (dashed curve) and0 = 1.09

√
B meV (solid

curve). For clarity only one data point in five is shown.

Figure 4. 2D magnetization (solid dots) versus perpendicular magnetic flux density,B, for the
ten-period GaAs/AlGaAs multiple-quantum-well structure at a temperature of 1.2 K together
with the best fits to the data assuming a Lorentzian broadening of the Landau levels and two
models for the broadening of0 = 2.16 meV (solid curve) and0 = 1.16

√
B meV (dashed

curve). For clarity only one data point in five is shown.

where(
∂I4

∂B

)
µ,T

= 1

B

{
− (h̄ωc)

2

2π2s2kT
+ πµ

sin(2πsµ/h̄ωc)

sinh(2π2skT /h̄ωc)

+ cos(2πsµ/h̄ωc)

sinh(2π2skT /h̄ωc)

[
h̄ωc

2s
+ π2kT coth

(
2π2skT

h̄ωc

)]}
. (22)

The termp in equations (20) and (21) is theB-field dependence of0 (see equation (3)).
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Figure 5. The density of statesg(E, B) of a 2DEG in GaAs as a function of electron energy
E and magnetic fieldB for Lorentzian-broadened Landau levels with0 = 2.16 meV (solid
curve) and Gaussian-broadened levels with0 = 1.09

√
B meV (dashed curve) for four different

magnetic flux densities: (a)B = 2 T, (b)B = 5 T, (c)B = 8 T and (d)B = 11 T. The ordinate
and abscissa axes are normalized in units ofg0 = m∗/πh̄2 andh̄ωc respectively.

The above analysis is conditional on the inequalityµ � kT being satisfied. While this
will be true for measurements made on a system with a high carrier density and low effective
mass at low temperatures it will not always be so, for while the expression forI1 is exact,
those forI2, I3 andI4 are merely approximations, their relative error being determined by
the parameter1 = exp(−µ/kT ). For the samples described in this paper1 < 10−25 at
T = 4.2 K and so any corrections to the termsI2, I3 and I4 can be disregarded. It should
be pointed out, however, that for samples of fixed carrier densityns , the expressions for the
grand potential,�(B), and the 2D magnetization,M(B), are extremely sensitive functions
of the chemical potential,µ(B), and so great care is needed in the numerical determination
of µ(B) from equation (16) or (17). For this reason the correction terms toI2, I3 and I4

are given in the appendix for future reference.
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Figure 5. (Continued)

4. Experimental results

We have used the analytical expressions forM(B) (equations (13) and (20)–(22)) to analyse
the magnetization of a ten-period GaAs/AlGaAs multiple-quantum-well structure. The
structure was grown by MBE on a semi-insulating GaAs substrate, and Shubnikov–de Haas
and Hall measurements indicated that the carrier density per layer,ns , was 1.2 × 1016 m−2

at 4.2 K while the Hall mobility was 2.9 m2 V−1 s−1. These results equate to a transport
lifetime, τ , of 1.1 ps and an elastic mean free path of 0.5 µm. The width of the GaAs
potential wells is 10 nm and their periodicity is 47 nm.

The magnetization of a 14 mm× 14.5 mm slice of the multiple-quantum-well sample
was measured using the magnetometer and experimental arrangement shown in figure 1 at
a temperature of 1.2 K. During the measurement the sample was oriented with its normal
at an angle of 30◦ to the magnetic field direction while the field was swept up from zero.
Figure 2 shows a typical plot of the resulting torque on the sample as a function of the total
external magnetic flux density. It can be seen that in addition to the oscillations there is a
large paramagnetic background signal at low fields (which we assume is due to impurities in
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the rotor) and a large eddy current peak atB = 9.45 T. Initial magnetization measurements
were made using an n− silicon rotor; however, we have recently found that semi-insulating
GaAs gives a much lower background signal which we attribute to its much lower impurity
concentration.

The background signal was removed from the raw data (curve A in figure 2) using a
fitting routine and a trial algebraic function (curve B) to give the torque due to the 2DEG
(curve C). The actual magnetization of the 2DEG is then derived from curve C by dividing
the data byBAN sinθ whereA is the area of the sample andN is the number of 2D layers
(in this caseN = 10).

Figure 6. 2D magnetization (solid squares) of the ten-period GaAs/AlGaAs multiple-quantum-
well sample atT = 4.2 K together with the best fits to the data for a Lorentzian DOS with
a broadening of0 = 2.675 meV (solid curve) and a Gaussian DOS with a broadening of
0 = 1.212

√
B meV (dashed curve).B is the perpendicular magnetic flux density. For clarity

the (a) low-field and (b) high-field data are shown separately.

When comparing the experimental magnetization data with theory we have considered
two different models for the Landau level line-shape: Lorentzian and Gaussian; and two
different models for the broadening: constant0 and 0 ∝ √

B. These models are shown,
together with the experimental data, in figure 3 and figure 4. In fitting to the experimental
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Figure 7. 2D magnetization (solid squares) of the ten-period GaAs/AlGaAs multiple-quantum-
well sample atT = 2.2 K together with the best fits to the data for a Lorentzian DOS with
a broadening of0 = 2.529 meV (solid curve) and a Gaussian DOS with a broadening of
0 = 1.189

√
B meV (dashed curve).B is the perpendicular magnetic flux density. For clarity

the (a) low-field and (b) high-field data are shown separately.

data only two fitting parameters were initially employed, the carrier density,ns , and the
Landau level broadening,00. The background DOS as characterized by the parameterξ

was assumed to be zero. No spin splitting was observed in any of the samples discussed
here and so was not included in any of the theoretical models.

It can be seen from figure 3 that for Gaussian broadening the0 ∝ √
B model fits

the data much better than the constant-broadening case, while figure 4 indicates that for
Lorentzian broadening the reverse is true. A comparison of figure 3 with figure 4 indicates
that over this particular field range(2 T < B < 5 T) there is no significant difference
between the Lorentzian model with constant broadening(0 = 2.16 meV) and the Gaussian
model with0 = 1.09

√
B meV. This is not particularly surprising since equations (6) and

(7) indicate that the fundamental frequency components(s = 1) of the DOS in each case
are virtually identical and at low fields the contribution of the harmonics(s > 1) will be
negligible. This is further illustrated in figure 5 which shows the DOS as a function of
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energy for the two theoretical models in question (equations (6) and (7)). It is clear that
at low fields the DOS described by the two models are indistinguishable and only at high
fields is there an appreciable difference.

Figure 8. 2D magnetization (solid squares) of the ten-period GaAs/AlGaAs multiple-quantum-
well sample atT = 0.55 K together with the best fits to the data for a Lorentzian DOS with
a broadening of0 = 2.522 meV (solid curve) and a Gaussian DOS with a broadening of
0 = 1.165

√
B meV (dashed curve).B is the perpendicular magnetic flux density. For clarity

the (a) low-field and (b) high-field data are shown separately. Note also the deviation between
the data and the two models for 8.5 T < B < 9.5 T due to the presence of an eddy current
peak.

Further measurements were made in fields of up to 15 T over a range of temperatures
between 0.125 K and 4.2 K with the sample immersed in the dilute phase of a3He/4He
dilution refrigerator. The sample was tilted so that the normal to the 2DEG was aligned
at an angle of 15◦ to the field. For these measurements a different magnetometer design
was employed in which the split electrode on the stator was suspended on a second rotor
of identical size to that supporting the sample [24]. In this way the background signal due
to the paramagnetic moment of the sample-carrying rotor could be significantly reduced.
Unfortunately, this experimental arrangement precluded any directin situ calibration of the
magnetometer sensitivity. Calibration was therefore performed by comparing the amplitudes
of the dHvA oscillations below 5 T with those observed previously for the same sample at
the same temperature in a calibrated run.
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Figure 9. 2D magnetization (solid squares) of the ten-period GaAs/AlGaAs multiple-quantum-
well sample atT = 0.3 K together with the best fits to the data for a Lorentzian DOS with
a broadening of0 = 2.469 meV (solid curve) and a Gaussian DOS with a broadening of
0 = 1.157

√
B meV (dashed curve).B is the perpendicular magnetic flux density. For clarity

the (a) low-field and (b) high-field data are shown separately. Note also the deviation between
the data and the two models for 8.7 T < B < 9.7 T due to the presence of an eddy current
peak.

Figure 6 shows a typical set of data at 4.2 K together with two theoretical fits, one due
to a Lorentzian DOS with constant broadening and the other due to a Gaussian DOS with
0 ∝ √

B. For clarity the low-field and high-field data in figure 6 are shown in separate
figures (figure 6(a) and figure 6(b)). It can be seen that at low fields the data are consistent
with those shown in figure 3 and figure 4, with both models for the DOS resulting in
equally convincing fits to the magnetization data. However, at the highest fields there is
a significant difference between the two models, particularly in the characteristic shape of
the oscillations that each model describes. The Gaussian DOS with0 ∝ √

B results in
oscillations that are more saw-tooth in character, possessing a greater harmonic content.
The Lorentzian DOS with constant broadening, on the other hand, results in oscillations
which are more sinusoidal and show better agreement with the experimental data. This
behaviour was repeated at every temperature investigated with the Lorentzian model always
proving a significantly better fit to the data. This can be seen from the data in figure 7,
figure 8 and figure 9 which were measured atT = 2.2 K, T = 0.55 K andT = 0.3 K
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respectively.
It can also be seen from figures 8 and 9 that at temperatures below 1.0 K eddy current

peaks begin to be observed at integer filling factors. These arise as a consequence of the
zero-resistance phase associated with the localized states between Landau levels and are
only observed when the overlap of the tails of adjacent Landau levels is such that all of
the states in the mid-gap are localized. In this particular sample, however, the absence of
any significant spin-splitting of the Landau levels means that only even-numbered filling
factors are observed. The eddy current peaks seen atB = 9.15 T in figures 8 and 9 occur
for filling factors of ν = 6 (or a Landau level indexn = 3), though peaks atB = 6.9 T
corresponding toν = 8 were observed at lower temperatures.

The magnitude of the eddy current peaks depends on the sweep rate of the magnetic
field and can result in magnetic moments many times greater than the amplitude of the
dHvA oscillations (see figure 2). Such large peaks tend to obscure the underlying dHvA
oscillations. Consequently all data points in the vicinity of eddy current peaks were excluded
from the fitting procedure in order that they would not distort the results. In addition, no
fitting to data aboveB = 11.5 T was attempted because of uncertainty in the position of
the background in the region of the last oscillation due to the divergence in oscillation
amplitude with field. The eddy currents themselves are extremely long-lived due to the
dissipationless state of the quantum Hall plateaux. Their characteristic decay time as a
function of temperature and Landau level index has already been investigated [24] and has
been found to exceed several hours in duration.

Figure 10. The temperature dependence of the Landau level broadening,0, assuming a
Lorentzian-broadened density of states (solid squares).

The magnetization of the multiple-quantum-well sample was measured at seven different
temperatures between 0.125 K and 4.2 K. The results of the fitting procedure indicated that
the Landau level broadening has a small but significant positive temperature dependence (see
figure 10). Such behaviour is not inconsistent with that observed for the electron mobility
in GaAs/AlGaAs heterostructures where the temperature-dependent term is thought to arise
from scattering by acoustic phonons [26]. Unfortunately, the scatter in the data points in
figure 10 precludes any detailed analysis of the temperature dependence of0 in this case.

The above fits all assume the background DOS to be negligible. To test this hypothesis
the above data were refitted with a background DOS as characterized by the fitting parameter
ξ included in addition to the previous fitting parameters,ns and 0. The results of this
procedure indicated that for the low-field data in figure 3 and figure 4 the inclusion of a
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Figure 11. 2D magnetization (solid curve) versus the perpendicular magnetic flux density,B,
for sample 1-1107A at a temperature of 1.2 K. The 2D carrier concentration is 8.31×1015 m−2

and the 77 K mobility is 4.7 m2 V−1 s−1. Also shown are the two best fits to the data, one
employing a Lorentzian broadening of0 = 1.34 meV (dotted curve) and the other a Gaussian
broadening of0 = 0.862

√
B meV (dashed curve).

background DOS resulted in values forξ that were less than 0.04 for both the Lorentzian-
broadened DOS model with a magnetic-field-independent0, and the Gaussian-broadened
DOS model with0 ∝ B1/2. For the high-field data (figures 6 to 9) the outcome was similar
with ξ always less than 0.04 except at the highest temperature investigated(T = 4.2 K)

where it rose to 0.08. We attribute this rise to the increased experimental error at high
temperatures due to the reduced amplitude of the oscillations. The values obtained forξ

are significantly less than the contribution that the broadening makes to the DOS between
Landau levels (see figure 5). This would appear to indicate that the DOS between Landau
levels in this sample can be accounted for entirely by the broadening of the levels themselves
without the need to resort to anad hocbackground term.

In addition to a ten-period multiple-quantum-well sample we have also measured the
magnetization at 1.2 K of several single-layer GaAs/AlGaAs heterostructure samples with
mobilities between 1.5 m2 V−1 s−1 and 5.0 m2 V−1 s−1 using fields of up to 5 T.
Because these samples have only one 2DEG, the dHvA signal is significantly reduced
in comparison with that of the ten-layer sample, and the effects of mechanical vibration and
the background magnetization of the rotor become more significant. Nevertheless, in spite of
these difficulties, these samples clearly show the same qualitative results for the broadening
as the multiple-quantum-well sample over the same field range. The magnetization data for a
typical sample are shown in figure 11 (sample 1-1107A). In this and all other similar samples
with mobilities of up to 5.0 m2 V−1 s−1 that we have so far investigated, the GaussianB1/2

DOS model and constant-broadening Lorentzian DOS model prove to be equally convincing
fits to the data at low magnetic fields and, as for the multiple-quantum-well sample, are
virtually indistinguishable.

5. Discussion

The results presented here clearly differ from most of those that have been reported
previously using both magnetization [13–15] and other experimental techniques [5–9, 11].
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One reason for this may be the relative sensitivity of the various experimental procedures
used. It can be seen from figures 6–9 and figure 11 that the difference between the Gaussian
B1/2 and constant-broadening Lorentzian models is small and would be difficult to detect
in lower-mobility samples or at lower fields and higher temperatures. Indeed, it is clear
that this difference is much smaller than the disparity in the single-particle DOS for the two
models. This will be true for all thermodynamic potentials and any quantity that depends
on the thermodynamic DOS, and is therefore a problem that will also be encountered in
magnetocapacitance and heat capacity measurements. The reason for this can be found
in the temperature-dependentx/ sinh(x) term of the thermodynamic DOS which increases
the damping of the higher-harmonic terms. Yet it is these harmonics that allow the two
models to be distinguished. Thus, the greater this damping term becomes (i.e. at high
temperatures and low magnetic fields), the harder it is to distinguish between the Gaussian
B1/2 and constant-broadening Lorentzian models. This could partially explain why the
constant-broadening Lorentzian model has not been reported previously.

Despite this however, it is clear that no consensus yet exists regarding the exact form
of the Landau level DOS in 2D systems. The fact that so many different techniques yield
so many different results for the DOS suggests that at least some of these results owe
more to the actual experimental method employed than to the nature of the system under
investigation. With the exception of magnetization, most experimental determinations of
the DOS involve perturbing the system. As a result, in some cases it is often not entirely
clear what it is that is actually being measured or how reliable those measurements may
be. This does not mean that such techniques are of no practical use (although some do
appear to require a greater leap of faith than others), merely that they require corroboration.
Magnetization can provide such corroboration, yet until recently very little work has been
reported using this technique.

Previous magnetization measurements [13–15] have yielded results which at first sight
appear to differ slightly from those presented here. The difference between the Gaussian
B1/2-model observed in previous work [13, 15] and the constant-broadening Lorentzian
model observed here may be explained in part by the greater sensitivity, temperature and
field range of our magnetometer system which allows these differences to be observed more
clearly than has been possible previously. In addition, ourin situ calibration results in more
accurate data which also show closer agreement with theory than previous experimental
data. It should also be noted that some previous results [14] involved the filtering of data,
a procedure which could result in the removal of the harmonic components which help to
distinguish between the different DOS models.

Our results for the magnetic field dependence of the broadening are, however, consistent
with recent theoretical work [18, 19] which suggests that at low fields the Landau level
width, 0, should vary with magnetic field as0 ∝ √

B, whereas at high fields it should
be independent of field. The critical parameter in determining which model should be
applicable is the ratio of the magnetic length,lB , to the extent of the disorder (the correlation
length).

The quality of the fits that we obtain also negates the need to introduce the concept
of a background DOS. This may be due to the fact that the extent of the broadening in
our samples ensures that even at the highest fields(B ∼ 11 T) there remains a significant
DOS between Landau levels. This can be as high as 33% of the zero-field value due to
the comparatively slow decay(∼E−2) of the Lorentzian line-shape when compared with
its Gaussian counterpart. In addition, we see no evidence to support the theory that the
broadening oscillates with field due to changes in electron screening as has been advocated
by some workers [6].
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The results that we have presented here are also similar to those of Ashoori and
Silsbee [10] who claim to have observed Lorentzian broadening of Landau levels in
magnetocapacitance measurements of a double-barrier tunnelling structure with the broaden-
ing 0 being independent ofB. However, they also reported that the broadening increased
with decreasing filling factor,ν = eB/h, particularly where the filling factor approached
the quantum limit (whereν ∼ 1). This feature of their results could be a consequence of
their experimental method which involved measuring the magnetocapacitance at a constant
magnetic field while varying the gate bias which controlled the chemical potential (and
hence the carrier concentrationns) in the potential well. Hence by adjusting the bias to
reduce the filling factor they would necessarily reduce the carrier concentration in the well.
This would in turn reduce the amount of screening and therefore increase the broadening
of the Landau levels. In our measurements, by contrast,ns is kept constant and so any
changes in screening will be less significant. This could explain why we have found no
evidence for a filling factor dependence of the broadening in any of our samples, although
so far we have restricted our measurements to the case whereν > 6.

So far our work has been confined to comparatively low-mobility samples
(<5.0 m2 V−1 s−1) with relatively high 2D carrier densities, where the Landau level
broadening is comparatively large and does not appear to be significantly influenced by
the theoretically predicted variation in electron screening [22]. In order to finally resolve
the issue of Landau level line-shape it would be desirable to extend this work to samples
of higher mobility. Such samples generally exhibit a reduced Landau level broadening that
would allow the differences in the various theoretical DOS models to become more apparent.
Unfortunately they would also have a smaller carrier density than those investigated here,
and this in turn would reduce the amplitude of the oscillations, while their increased mobility
may make them more susceptible to induced eddy currents upon sweeping the field [24].

6. Summary

We have presented results of a systematic study of the magnetization of 2D electron systems
in the quantum Hall regime that indicate that at high magnetic fields the DOS consists of a
periodic array of Lorentzian-broadened Landau levels with the broadening being independent
of the magnetic field and Landau level index. These results clearly show a different
behaviour of the magnetization of 2D electron systems from those previously reported at
lower fields [13–15]. This, we believe, is due to the greater sensitivity and low-temperature
capability of our magnetometer, and our improved background removal and calibration
procedure. These results also differ considerably from those determined using other
experimental techniques such as photoluminescence, specific heat and magnetocapacitance.
We attribute this to the non-equilibrium nature of those experimental methods which are
all known to perturb the system under investigation to some degree and which are more
difficult to model accurately than the magnetization method.
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Appendix

The equations forI2, I3 and I4 (equations (19), (12) and (13) respectively) are approx-
imations that apply in the limit of low temperature and high chemical potential,µ. However,
it is possible to extend these equations to any degree of accuracy in the following manner.

The equations forI2 andI4 are derived using the identity [25]∫ ∞

−∞

eiax

2[1 + cosh(x)]
dx = πa

sinh(πa)
. (A1)

The integral expression forI2

I2 =
∫ ∞

0
f (E, µ) cos

(
2sπE

h̄ωc

)
dE (A2)

can be integrated by parts to give

I2 = h̄ωc

4sπkT

∫ ∞

0

1

1 + cosh((E − µ)/kT )
sin

(
2sπE

h̄ωc

)
dE (A3)

and this may be rewritten as

I2 = πkT
sin(2πsµ/h̄ωc)

sinh(2π2skT /h̄ωc)
− h̄ωc

4sπ kT

∫ 0

−∞

sin(2sπE/h̄ωc)

1 + cosh((E − µ)/kT )
dE. (A4)

The final integral is the correction term and it can be evaluated by rewriting the
1/(1 + cosh(x)) term wherex = (E − µ)/kT as a power series in ex and integrating
each term separately. The expression forI2 then becomes

I2 = πkT
sin(2πsµ/h̄ωc)

sinh(2π2skT /h̄ωc)
− kT

∞∑
n=1

(−1)n
n

n2 + (2π2skT /h̄ωc)2
e−nµ/kT . (A5)

The main application of this expression is when the carrier density,ns , needs to be calculated
extremely accurately in order to determineµ(B) precisely. Fortunately, because of the
exponential term, the summation converges extremely rapidly.

Comparable results can be derived forI3 andI4 using a similar method and will yield
the following expressions:

I3 = −
{

µ2

2kT
+ π2kT

6
+ kT

∞∑
n=1

(−1)n

n2
e−nµ/kT

}
(A6)

and

I4 = − (h̄ωc)
2

4π2s2kT
+ h̄ωc

2s

cos(2πsµ/h̄ωc)

sinh(2π2skT /h̄ωc)
− kT

∞∑
n=1

(−1)n
e−nµ/kT

n2 + (2π2skT /h̄ωc)2
. (A7)
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